Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey.

نویسندگان

  • Y Smith
  • B D Bennett
  • J P Bolam
  • A Parent
  • A F Sadikot
چکیده

The cerebral cortex and the intralaminar thalamic nuclei are the major sources of excitatory glutamatergic afferents to the striatum, whereas the midbrain catecholaminergic neurones provide a dense intrastriatal plexus of dopamine-containing terminals. Evidence from various sources suggests that there is a functional interaction between the glutamate- and dopamine-containing terminals in the striatum. The aim of the present study was to determine the synaptic relationships between cortical or thalamic inputs and the dopaminergic afferents in the sensorimotor territory of the monkey striatum. To address this issue, anterograde tracing in combination with immunocytochemistry for tyrosine hydroxylase (TH) was carried out by light and electron microscopy. Squirrel monkeys received injections of biocytin in the primary motor and somatosensory cortical areas or injections of either Phaseolus vulgaris-leucoagglutinin (PHA-L) or biocytin in the centromedian nucleus (CM) of the thalamus. Sections that included the striatum were processed to visualize the anterograde tracers alone or in combination with TH immunoreactivity. The anterogradely labelled fibres from the cerebral cortex and CM display a band-like pattern and are exclusively confined to the postcommissural region of the putamen, whereas TH-immunoreactive axon terminals are homogeneously distributed throughout the entire extent of the striatum. Electron microscopic analysis revealed that the anterogradely labelled terminals from the cerebral cortex form asymmetric synapses almost exclusively with the heads of dendritic spines. The thalamic terminals also form asymmetric synapses, but in contrast to cortical fibres, predominantly with dendrites (67.4%) and less frequently with spines (32.6%). The TH-immunoreactive boutons are heterogeneous in morphology. The most common type (84% of the total population) forms symmetric synapses; of these the majority is in contact with dendritic shafts (72.1%), less with spines (22.5%) and few with perikarya (5.4%). In sections processed to reveal anterogradely labelled cortical fibres and TH-immunoreactive structures, individual spines of striatal neurones were found to receive convergent synaptic inputs from both cortical and TH-immunoreactive boutons. In contrast, anterogradely labelled thalamic terminals and TH-immunoreactive boutons were never seen to form convergent synaptic contacts on the same postsynaptic structure. These findings suggest that the dopaminergic afferents are located to subserve a more specific modulation of afferent cortical input than afferent thalamic input in the sensorimotor territory of the striatum in primates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Specific and Non-Specific Thalamocortical Afferents to the Whisker–Related Sensory Cortical Region in Rats with Congenital Hypothyroidism

Background & Aims: Thyroid hormones are of great importance in the development of the central nervous system. Congenital hypothyroidism may affect the reorganization of specific and non-specific thalamocortical afferents to whisker–related sensory (wS1) corticol region in rats. Methods: Congenital hypothyroidism was induced by adding propylthiouracil (PTU) (25 ppm) to the rats...

متن کامل

Morphology and Synaptic Organization of Non-Dopaminergic Nigral Projections to the Medio Dorsal Thalamic Nucleus of the Rat, a Study by Anterograde Transport of PHA-L

Background: Mediodorsal (MD) thalamic nucleus, which is considered to take place between extra pyramidal and limbic feedback circuit, receives projective fibers from ventrolateral neurons of reticular part of substantia nigra (SNr). In order to better understand the influence and chemical reaction of these fibers upon MD nucleus, the morphology and synaptology of them were examined in the prese...

متن کامل

The emotive brain, the noradrenergic system, and cognition

Motivation and attention can have a profound influence on perception, learning and memory. Neuromodulatory systems, especially the noradrenergic (NE) system, co-vary with psychological states to modulate cortical arousal, influence sensory processing and promote synaptic plasticity. There is even some suggestion that the NE system might facilitate functional recovery after brain damage. Post-sy...

متن کامل

The emotive brain, the noradrenergic system, and cognition

Motivation and attention can have a profound influence on perception, learning and memory. Neuromodulatory systems, especially the noradrenergic (NE) system, co-vary with psychological states to modulate cortical arousal, influence sensory processing and promote synaptic plasticity. There is even some suggestion that the NE system might facilitate functional recovery after brain damage. Post-sy...

متن کامل

A dopaminergic axon lattice in the striatum and its relationship with cortical and thalamic terminals.

Interactions between glutamatergic corticostriatal afferents and dopaminergic nigrostriatal afferents are central to basal ganglia function. The thalamostriatal projection provides a glutamatergic innervation of similar magnitude to the corticostriatal projection. We tested the hypotheses that (1) thalamostriatal synapses have similar spatial relationships with dopaminergic axons as corticostri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of comparative neurology

دوره 344 1  شماره 

صفحات  -

تاریخ انتشار 1994